Träden i staden: Användningen av LiDAR-data för att identifiera urban vegetation
Lindberg, F., Johansson, L. & Thorsson, S. (2013). Träden i staden: Användningen av LiDAR-data för att identifiera urban vegetation. (Mistra Urban Futures Report 2013: 2). Gothenburg: Mistra Urban Futures.
Abstract
Detaljerad kartläggning av urban vegetation är en viktig förutsättning för att värdera ekosystemtjänster i städer. Dock saknas som regel detaljerad information om vegetation som faller utanför stadens detaljplanering och markanvändningskartor, speciellt gäller detta vegetationens tredimensionella egenskaper. I denna studie har två olika LiDARdataset använts för att kartlägga den urbana vegetationen med avseende på dess utbredning och tredimensionella egenskaper (vegetationshöjd, stamzonhöjd och krönhöjd): (1) nationella Lantmäteriet (LM) och (2) från Göteborg stads stadsbyggnadskontor (SBK). Dataseten skiljer sig åt, främst i fråga om punkttäthet, klassificering och årstid för insamling, vilket innebär olika förutsättningar för vegetationskartering. I rapporten redovisas skillnader mellan dataseten och hur dessa skillnader påverkar kartläggningen av vegetation i urban miljö.
Resultaten jämfördes med fältobservationer. Fyra områden (1!1 km) i Göteborg användes som fallstudie. Resultaten visar att vegetationens utbredning och höjd kan uppskattas bra med LiDARdata i urbana miljöer om punkttätheten är hög och klassificeringen medger bra separering av returer. SBK-data uppfyller båda dessa kriterier. Den lägre punkttätheten och den grövre klassificeringen av LM-data medför att mycket vegetation utelämnas samt att oönskade objekt i större grad inkluderas i analysen. Beräknad vegetationshöjd korrelerar väl med fältobservationer, vilket gäller båda dataseten. Kronhöjd visar något sämre korrelation på grund av stor osäkerhet i beräkning av stamzonhöjd. Filtrering av preliminära vegetationsraster har genomförts vilket löser en del problem med oönskade objekt och artefakter som härrör från rumsliga variationer i punktmolnets täthet. Filtrering innebär dock manipulation av data och är därför också en osäkerhetsfaktor. LM-data kräver mer filtrering, framför allt måste celler med låga värden (< 2m) avlägsnas för att ta bort oönskade objekt, till exempel bilar. Den lägre upplösningen i LM-data gör också att filtreringen blir mer oprecis.